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Abstract

This paper describes the experimental verification of a nonlinear Jeffcott rotor model with a preloaded snubber ring. The

nonlinearity, in the form of a discontinuous stiffness, is caused by the radial clearance between rotor and the snubber ring.

The rotor is placed eccentrically within the snubber ring and the eccentricity can be varied. For purpose of clarity the

mathematical model of the rotor system with the preloaded snubber ring developed in Pavlovskaia et al. [Nonlinear

dynamics of a Jeffcott rotor with a preloaded snubber ring, Journal of Sound and Vibration 276 (2004) 361–379] is presented

briefly. Theoretical results obtained from analytical approximate solutions and numerical simulations of the model are

verified by the experimental study. A detailed description of the experimental rig and the data acquisition system developed

are presented, along with the experimental procedures used to investigate the dynamical responses of the system. The

results concentrate on the dynamic responses caused by interactions between the whirling rotor and the massless snubber

ring, which has much higher support stiffness than the rotor. Bifurcation diagrams, Poincaré maps and phase plane

diagrams are used to compare the results obtained from the experiment and the theory. Good correlation between the

experimental and theoretical results is found.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In rotor systems complex behaviour may occur due to various nonlinear effects of different types and
strength. One of the most interesting and practically important dynamic responses of rotor systems are caused
by bearing clearances, which are mainly due to piecewise nature of stiffness characteristics. It is well known
that dynamic interactions in such systems can lead to much more complex nonlinear behaviour than in
systems with smooth nonlinearities [1,2], including existence of grazing bifurcations and untypical routes to
chaos such blowout. In rotor systems, such phenomena are caused by intermittent contacts between the
components of the rotor system, which can lead to catastrophic failures. Therefore, it is vastly important to
conduct experimental verifications in order establish credible mathematical models predicting complex
dynamic responses of rotor systems.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

cr damping coefficient of the rotor
cs damping coefficient of the snubber ring
D distance between the centres of the rotor

and the snubber ring
f forcing frequency
kr rotor stiffness
ks snubber ring stiffness
M mass of rotor
mr out-of-balance
R radial displacement of the rotor relative

to the initial position of the snubber ring
xr displacement of the rotor in the horizon-

tal direction relative to the initial posi-
tion of the snubber ring

yr displacement of the rotor in the vertical
direction relative to the initial position of
the snubber ring

xs displacement of the snubber ring in the
horizontal direction

ys displacement of the snubber ring in the
vertical direction

Greek letters

Dx preloading of the snubber ring in the
horizontal direction

Dy preloading of the snubber ring in the
vertical direction

ex eccentricity of rotor in the x-direction
ey eccentricity of rotor in the y-direction
j0 initial phase shift
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Rotor systems with bearing clearances have been studied in the past, where the investigations concentrated
primarily on the Jeffcott rotors. In particular, Choy and Padovan [3], Muszynska and Goldman [4], Childs [5]
and Chu and Zhang [6,7] paid attention to rub interactions in rotating machinery. Ehrich [8] investigated
spontaneous sidebanding, while Ganesan [9] looked at the stability analysis. Synchronous and subharmonic
responses were also investigated in Refs. [5,10–12]. Numerical investigation of the Jeffcott rotor model with a
snubber ring by Karpenko et al. [13] has shown the existence of multiple attractors and fractal basins of
attraction. Influence of the preloading and viscous damping of the snubber ring was investigated in Ref. [14]
where it was shown how the preloading could stabilize the dynamic response. Gonsalves et al. [15] designed an
experimental rig to simulate the Jeffcott model and made a preliminary comparative analysis between the
experimental and numerical results.

Chaotic behaviour of a simple model of a Jeffcott rotor, supported hydrodynamically using short bearing
theory was considered by Brown et al. [16,17]. In Ref. [17] it was demonstrated that the system behaved
chaotically when the rotating unbalance force exceeded the gravitational load. They showed that at these
values of the force ratio the time history of the response is very sensitive to initial conditions and a spectral
analysis demonstrates a significant broadening from the expected peak at the rotational frequency.

The present paper complements our earlier studies presented in Refs. [13–15] by an experimental verification
of the theoretical predictions obtained using the model developed in Ref. [18]. Data from our experimental rig
has been collected and processed using a LabView data acquisition system, which allows the generation of
bifurcation diagrams and Poincaré maps and also to review on-line the system responses in the form of the
phase planes and time histories. In this paper, attention is paid to how the dynamics of the Jeffcott rotor
depend on the system and control parameters, in particular the shaft rotational speed (excitation frequency).
Diagrams were constructed for different eccentricities and preloading.

The main aims of this work are (i) to assess the correlation between the responses from the new theoretical
model of the rotor system [18] with the experiments, and (ii) to obtain an overview of the global system
dynamics, which can be consequently used to suppress the rotor vibration.
2. Experimental set-up

Fig. 1 shows the rotor rig which comprises essentially two main parts, a rigid rotor (1), visco-elastically
supported by four flexural rods (2) and excited by the out-of-balance mass (3), and a snubber ring (4) also
elastically supported by four compression springs. The rotor assembly consists of a steel rotor, running in two
angular contact bearings. Lightly preloaded angular contact bearings are used to ensure there is no axial
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Fig. 1. Photograph of the experimental Jeffcott rotor.

Fig. 2. Design drawing of experimental set-up.
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movement. Inner sleeves were fastened to the rotor to hold the bearings in place and oil seals were fitted. Holes
(5) were drilled and tapped in both inner sleeves for the addition of imbalance weights. A pair of dampers (6)
was attached to the rotor, one in each direction, to provide the system with heavier damping. The damping is
assumed to be linear viscous.

Four flexural rods (2) are clamped symmetrically at one end to the outer bearing housing and at the other to
a large support block. The support block (7) is in turn bolted to a large cast iron bed. The discontinuous
stiffness is provided by a ring to which four compression springs (8), of much greater stiffness than that of the
flexural rods, are secured symmetrically. The other ends of the springs are fixed to a large frame, clamped to
the bed. The rotor runs inside the ring, with a radial clearance between the ring (4) and the outer bearing
housing (1). Two different outer rings were used in the experiments one with a 0.5mm gap and another with
0.75mm. The design drawings of the experimental set-up are presented in Fig. 2.

The rotor is driven by a variable speed DC motor (9) controlled by a single-phase thyristor controller, which
features a closed-loop feedback using a tacho-generator. Utilizing a Fenner-type coupling, the drive shaft of
the motor is connected to a drive block employed to reduce the size of the drive shaft from the motor and to
mount the shaft speed monitoring disc. The shaft speed monitoring disc has a notch cut into it, which is
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Fig. 3. Schematic of instrumentation layout.
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aligned with the imbalance mass. As the notch passes a light-emitting-diode optoswitch, a once-per-revolution
phase signal is obtained. The displacements of the rotor system are monitored by noncontacting eddy probes.
Two probes were used for the rotor and another two for the snubber ring (see Fig. 2(a) and also the flow
diagram for instrumentation in Fig. 3). Subsequently, the displacement and forcing frequency signals were
collected by an unshielded screw terminal block TBX-68 supplier and then handled in a PCI-MIO-16E-1 A/D
board and transferred to the National Instrument data acquisition system LabView, using a purpose-written
program on a PC controlling the rate of sampling, the number of samples, calibration and computation of the
rotational frequency. The relative velocities of the rotor and the snubber ring _xr, _yr, _xs and _ys were calculated
using the LabView digital differentiation facility applied to the output signals from the eddy current probes.
The data was collated on the computer, where it was scaled, plotted and analysed in the form of Poincaré
maps and bifurcation diagrams.

3. Experimental verification of mathematical model of Jeffcott rotor with preloaded snubber ring

The experimental rig shown in Fig. 1 is modelled as a two-degrees-of-freedom piecewise nonlinear planar
oscillator, where the rotor makes intermittent contact with the preloaded snubber ring. As mentioned earlier
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the mathematical model for this system has been developed in Ref. [18], however for the purpose of clarity and
relevance to the mathematical predictions presented later, a brief summary is given below. In addition, we
have adopted in this paper the dimensional formulation of the mathematical model for the sake of clarity and
simplicity when comparing the theoretical predictions with the experimental results.

The physical model and its geometrical description are given in Fig. 4. The excitation of the rotor is
provided by an out-of-balance rotating mass producing the loading force of mro2. Here Or and Os denote the
current positions of the rotor and the snubber ring, respectively. Fig. 4(a) presents the situation when
the initial and current positions of the snubber ring coincide. The eccentricity vector e ¼ (ex, ey) determines the
initial position of the rotor Or, 0 relative to the initial position of the outer ring. In Fig. 4(a) the initial location
of the rotor in respect of the e is shown by dash line. The radius vectors Rs and Rr show the current positions

of the rotor and the snubber ring. The term D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xr � xsð Þ

2
þ yr � ys

� �2q
is the distance between the centres

of the rotor and the snubber ring. R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

r þ y2
r

p
is the radial displacement of the rotor. For the ‘‘no contact’’

situation the distance between the centres of the rotor and the snubber ring is equal to the radial displacement
of the rotor D ¼ R. To derive the equations of motion the absolute coordinate system (x, y), shown in
Fig. 4(b), was chosen. When rotor moves inside the stator without any interaction with the ring the equations
of motion for the rotor and the snubber ring are as follows

M €xr þ crx _xr þ krx ðxr � �xÞ ¼ mro2 cos j0 þ ot
� �

,

M €yr þ cry _yr þ kryðyr � �yÞ ¼ mro2 sin j0 þ ot
� �

,

ksxs þ cs _xs ¼ 0,

ksys þ cs _ys ¼ 0. ð1Þ

When the rotor is in contact with the snubber ring there are four unique regimes, for which the stiffness of the
snubber ring for x and y directions differs.
1.
 The displacement of the snubber ring greater than the preloading

xsj j4Dx; ys

�� ��4Dy,

M €xr þ crx _xr þ cs _xs þ krx ðxr � �xÞ þ ksxs ¼ mro2 cos j0 þ ot
� �

,

M €yr þ cry _yr þ cs _ys þ kry ðyr � �yÞ þ ksys ¼ mro2 sin j0 þ ot
� �

. ð2Þ
x
Os

�
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Fig. 4. (a) Physical model and (b) coordinate system.
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2.
Tab

Rela

xs(xr

xs ¼

xs ¼

xr �ð

xs ¼

~R ¼
The displacement of the snubber ring is greater than the preloading in y direction

xsj j � Dx and ys

�� ��4Dy,

M €xr þ crx _xr þ 2cs _xs þ krxðxr � �xÞ þ 2ksxs ¼ mro2 cos j0 þ ot
� �

,

M €yr þ cry _yr þ cs _ys þ kry ðyr � �yÞ þ ksys ¼ mro2 sin j0 þ ot
� �

. ð3Þ
3.
 The displacement of the snubber ring is greater than the preloading in x direction

xsj j4Dx and ys

�� �� � Dy,

M €xr þ crx _xr þ cs _xs þ krxðxr � �xÞ þ ksxs ¼ mro2 cos j0 þ ot
� �

,

M €yr þ cry _yr þ 2cs _ys þ kry ðyr � �yÞ þ 2ksys ¼ mro2 sin j0 þ ot
� �

. ð4Þ
4.
 The preloading acts in both directions

xsj j � Dx and ys

�� �� � Dy,

M €xr þ crx _xr þ 2cs _xs þ krxðxr � �xÞ þ 2ksxs ¼ mro2 cos j0 þ ot
� �

,

M €yr þ cry _yr þ 2cs _ys þ kry ðyr � �yÞ þ 2ksys ¼ mro2 sin j0 þ ot
� �

. ð5Þ
In Eqs. (1)–(5) M and m are the mass of the rotor, and the imbalance, respectively, krx and crx and kry and cry

denote the stiffness and the viscous damping of the rotor in the x- and y-directions, ks and cs are the stiffness
and viscous damping of the snubber ring, o is the rotation frequency, and j0 is the initial phase shift. The
distance from the centre of rotation to the location of the mass imbalance, m, is defined by r. For Eqs. (2)–(5)
the constraints between the rotor and the snubber ring coordinates were developed in [18] and are listed in
Table 1.

Equations of motion (1)–(5) have been derived using the following series of assumptions. Firstly, dry
friction between the ring and rotor has been neglected. Secondly, it was assumed that the snubber ring itself is
massless, because it is manufactured from aluminium and highly preloaded by compression springs. Thirdly,
gyroscopic forces are not taken into consideration since no angular motion of the rotor axis Or occurs.

A sample of extensive experimental studies [19] conducted to verify the mathematical model of Jeffcott rotor
system with a preloaded snubber ring developed at the University of Aberdeen [18] is presented here. The
following values of the system parameters were chosen: the rotor mass and mass of the out-of-balance were
M ¼ 9.7 kg and m ¼ 0.028 kg, respectively. The combined stiffness of the rods supporting the rotor was
krx ¼ kry ¼ 79 kN=m; this yields a natural frequency of 14.4Hz. The snubber ring stiffness was ks ¼ 2354kN/m.
The equivalent viscous damping from the rods and the dampers in the horizontal and vertical directions was
the same equal to crx ¼ cry ¼ 105 kg=s. The out-of-balance radius, was r ¼ 35mm.

For the bifurcation diagrams, the forcing frequency (the shaft rotational speed) was varied from 7 to 30Hz
and for some tests up to 50Hz to examine the global bifurcations. The system responses were investigated by
collecting data with forcing frequency steps of around 0.6–1Hz. The continuation method was applied, so for
le 1

tionships between the rotor and the snubber ring coordinates

, yr) ys(xr, yr) Snubber ring location

xr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

r þ y2r
p

� g
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

r þ y2r
p

ys ¼ yr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

r þ y2r
p

� g
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

r þ y2r
p

xsj joDx; ys

�� ��oDy

2ysðxrþDx sgnðxs ÞÞ

yrþys
� Dx sgnðxrÞ yr � ys

� �2
xr þ Dx sgn xsð Þð Þ

2
�

þ yr þ ys

� �2�
¼ g2 yr þ ys

� �2 xsj j � Dx ; ys

�� ��oDy

xsÞ
2 yr þ Dy sgn ys

� �� �2
þ xr þ xsð Þ

2
� �

¼ g2 xr þ xsð Þ
2

ys ¼
2xs yrþDy sgn ysð Þð Þ

xrþxs
� Dy sgn ys

� � xsj joDx; ys

�� �� � Dy

xrþDx sgn xsð Þð Þ ~R�gð Þ
~R

� Dx sgn xsð Þ,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xr þ Dx sgn xsð Þð Þ

2
þ yr þ Dy sgn ys

� �� �2q ys ¼
yrþDy sgn ysð Þð Þ ~R�gð Þ

~R
� Dy sgn ys

� � xsj j � Dx ; ys

�� �� � Dy
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each frequency the initial conditions were taken from the previous examined frequency discarding about 400
cycles in order to ensure that steady-state behaviour is reached.

For the bifurcation diagram presented in Fig. 5 a comparison of the theoretical (Fig. 5a) and experimental
(Fig. 5b) responses shows a good degree of similarity. In both figures for the low magnitude of the forcing
frequency period one motion is observed for fA(7, 13.6)Hz and for fA(16.2, 17.7)Hz followed by chaotic
regimes for fA(13.6, 16.2)Hz and fA(17.7, 22.8)Hz, respectively. In the theoretical and experimental diagrams
the width of both periodic and chaotic regimes are the same. After the flip bifurcation at fE22.8Hz the
theoretical response becomes periodic up to the end of the diagram. In the experimental bifurcation diagram
in Fig. 5(b) at fA(25.6, 32)Hz a quasi-periodic regime was obtained. In both diagrams two cross-sections
were examined in more detail by constructing Poincaré maps. Here chaotic attractors were obtained for:
f ¼ 14.4 and 19.3Hz keeping the remaining parameters constant: ks ¼ 2354 kN/m, krx ¼ kry ¼ 79 kN=m,
crx ¼ cry ¼ 105 kg=s, M ¼ 9.7 kg, m ¼ 0.028 kg, r ¼ 35mm, g ¼ 0.5mm, ex ¼ 0.025mm, ey ¼ 0.20mm
Fig. 5. Bifurcation diagram for the forcing frequency where ks ¼ 2354kN/m, krx ¼ kry ¼ 79 kN=m, crx ¼ cry ¼ 105kg=s, cs ¼ 3.5 kg/s,

M ¼ 9.7 kg, m ¼ 0.028 kg, r ¼ 35mm, g ¼ 0.5mm, ex ¼ 0.025mm, ey ¼ 0.20mm and Dx ¼ Dy ¼ 0.04mm; (a) theoretical and (b)

experimental.
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and Dx ¼ Dy ¼ 0.04mm. It is apparent that the theoretical and experimental attractors are similar in
shape. Despite the similarity of shape, there are some differences in the amplitudes of displacements and
velocities.

In the next experiment the eccentricity ratios were set up as ex ¼ 0.45mm and ey ¼ 0.05mm. The bifurcation
diagrams constructed theoretically and experimentally for this case are presented in Fig. 6. Because only
period one motion regime exists in the interval fA(30, 50)Hz, the maximum forcing frequency for these
diagrams was reduced to 30Hz. Comparing with the previously shown diagrams of Fig. 5, here the eccentricity
change leads to aggregation of two chaotic zones into one, and the transition from period one motion to chaos
now is carried out through period doubling bifurcations. The experimental result of Fig. 6(b) follows all the
basic bifurcations observed theoretically such as the period doubling bifurcation at fE14.74Hz and the flip
bifurcation at fE26.1Hz. Phase portraits for the periodic and chaotic cross-sections were plotted for f ¼ 17.6
and 25Hz showing also a good correspondence.
Fig. 6. Bifurcation diagram for the forcing frequency where ks ¼ 2354kN/m, krx ¼ kry ¼ 79 kN=m, crx ¼ cry ¼ 105kg=s, cs ¼ 3.5 kg/s,

M ¼ 9.7 kg, m ¼ 0.028 kg, r ¼ 35mm, g ¼ 0.5mm, ex ¼ 0.45mm, ey ¼ 0.05mm and Dx ¼ Dy ¼ 0.04mm; (a) theoretical and (b)

experimental.
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Fig. 7. (a),(c) Experimental and (b),(d) theoretical phase portraits for periodic behaviour of the Jeffcott rotor system in x- and y-directions

for the cross-section f ¼ 13.1Hz.
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Furthermore, phase portraits in the x and y directions for periodic and chaotic trajectories are examined at
f ¼ 13.1 and 18.5Hz in Figs. 7 and 8. The experimental phase portraits in the x- and y-directions are plotted in
(a) and (c), and the corresponding to them theoretical graphs are depicted in (b) and (d). As can be seen, again
the theoretical predictions correspond well to the experimental results.

Comparing the system responses for different values of the forcing frequency in Figs. 5 and 6, it is clear from
the bifurcation diagrams and phase planes that periodic regimes dominate at low and at high frequencies, and
chaotic motion occurs in between. The periodic regimes for the low frequency are caused by insufficient
excitation of the rotor and as a result either there is no contact between the rotor and the snubber ring or just
one contact per period. As the forcing frequency is increased, and the amplitude of oscillations rises the
impacts between the rotor and the ring become stronger and the system generates chaotic motion. The
periodic regimes that are observed for the high frequencies have a wide range and lower amplitude of vibration
than chaotic ones. The experimental results for changing forcing frequency shown above correspond well with
the theoretical predictions.
4. Conclusions

The main aim of this paper was to assess the correlation between the responses from the theoretical model
[18] and the experiments for the rotor system with a preloaded snubber ring, and to obtain an overview of the
global system dynamics, which can be used subsequently to suppress the rotor vibration. More specifically, the
experimental verification of a nonlinear Jeffcott rotor model with a preloaded snubber ring has been carried
out. The mathematical model neglects frictional and gyroscopic forces, and focuses on the dynamic
interactions between a whirling rotor and a preloaded snubber ring having much larger stiffness than the
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Fig. 8. (a),(c) Experimental and (b),(d) theoretical phase portraits for chaotical behaviour of the Jeffcott rotor system in x- and

y-directions for the cross-section f ¼ 18.5Hz.
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rotor. The nonlinearity, in the form of a discontinuous stiffness, is caused by the radial clearance bet-
ween rotor and the snubber ring. The rotor is placed eccentrically within the snubber ring and the eccentricity
can be varied.

Theoretical results obtained from analytical approximate solutions and from the direct numerical
integration have been verified by the experimental study conducted on a dedicated experimental rig. A detailed
description of the experimental rig and the data acquisition system developed are presented, along with the
experimental procedures used to investigate the dynamical responses of the system. The results concentrate on
the dynamic responses caused by interactions between the whirling rotor and the massless snubber ring having
much higher support stiffness than the rotor. Bifurcation diagrams with forcing frequency as a control
parameter, Poincaré maps and phase plane diagrams have been used to compare the results obtained from the
experiment and the theory. It is clearly shown that the experimental studies have confirmed the basic
bifurcation scenarios predicted theoretically for a wide range of system parameters. In conclusion, a good
correlation between the experimental and theoretical results has been found.
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